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Abstract: One “silver lining” of the COVID-19 pandemic has been the reduction in air pollution that followed lockdowns. 

Unfortunately, this unintended air pollution decline will likely be short-lived. As regions begin to recover their economies, travel 

and industrial activity will increase the ambient pollutants quickly offsetting the improvement in air quality. Therefore, it is 

urgent to clarify the causal impact of reopening an economy on air quality during COVID-19. Based on city-level daily air 

quality data in China, this paper is the first to empirically analyze the causal effect of reopening the economy in the provincial 

capital Lanzhou on concentrations of four air pollutants using the synthetic control method. The results show that the reopening 

caused a significant increase in the concentration of NO2 by as much as 30 µg/m
3
 (an increase of 75% from the lockdown level) 

and a significant increase in O3 concentrations by 60µg/m
3
 (a 60% increase) which peaked on the 6th day after the restart. The 

reopening also led to significant fluctuations in SO2 and CO concentrations. This study contains useful conclusions by 

providing timely and reliable causal evidence on the lasting impact of COVID-19 on air quality. 
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1. Introduction 

COVID-19 first appeared in the city of Wuhan in the Hubei 

Province of China in early December of 2019 [1, 2] and spread 

mainly through human-to-human contact [3]. Before the 

successful development of the novel COVID-19 vaccines 

from Pfizer and Moderna, many countries have considered 

and implemented measures to restrict human mobility as part 

of their response plan [4-7]. Surprisingly, a perceived 

improvement in air quality became evident from the early 

days of these lockdowns. With the closure of many shops and 

businesses, reduced industrial activity and vehicle use, reports 

of noticeably lower pollution levels emerged. These reports 

first appeared in China and then in many other countries 

[8-11]. Such unintended improvements in air quality along 

with the possible associated health benefits offer a “silver 

lining” to the overwhelmingly negative impacts of this 

epidemic [12]. 

Recent studies have quantified the positive environmental 

impact of the global lockdown and the slowdown of 

economic activity. He et al. show that lockdown measures in 

China reduced the Air Quality Index (AQI) and the fine 

particulate matter (���.�) concentrations by 22% and 24% 

respectively, within weeks of the lockdown [13]. Almond et 

al. also focus on air pollution in China during COVID-19. 

They determined that while nitrogen dioxide ( ��� ) 

emissions declined precipitously, the improvement in sulfur 

dioxide (���) emissions was small [14]. Similarly, Cole et al. 

found that ���  and coarse particulate matter ( ��	
 ) 

concentrations fell by 63% and 35% respectively during the 

Wuhan COVID-19 lockdown, while ���  and carbon 

monoxide ( �� ) concentrations did not decrease 

significantly [12]. Cicala et al. focused on the impact of 

reduced vehicle usage and electricity consumption on 

pollution emissions and expected deaths due to stay-at-home 

policies in the United States. The authors calculate that 

reductions in emissions from reduced travel and electricity 

usage reduced deaths by over 360 people per month. Further, 

they estimate that carbon dioxide (���) emissions from these 

sources declined by 46 million metric tons per month [15]. 

Brodeur et al. examine the causal effect of safer-at-home 

policies on air pollution across U.S. counties. They find an 

approximately 25% reduction in ���.� concentrations and a 
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reduction of the incidence of county-days with an AQI of 

code yellow or above by two-thirds [16]. Dang and Trinh 

confirm the results from most individual country or city 

studies showing that lockdowns reduce air pollution. They 

find that after 90 days of lockdown, global reduction in ��� 

and ���.� hovered around 9% and 4%, respectively [17]. 

However, this temporary respite in air quality is likely to be 

short-lived, as it requires a billion people staying indoors and 

millions falling back into poverty. As regional economies 

begin to recover from the COVID-19 pandemic, industrial 

activity and human mobility will again release pollutants into 

the environment so that air quality improvement will be 

quickly offset. It can be seen that the long-term impact of 

COVID-19 on air quality will depend on the response of 

countries and corporations to the economic crisis. It is urgent 

to further study this issue because so far there has been little 

research focusing on the impact of reopening an economy on 

air quality during COVID-19. 

After Chinese authorities officially confirmed 

human-to-human transmission of the virus on January 20, 

2020, China implemented multiple non-pharmaceutical 

interventions (NPIs) to curb the spread of COVID-19. On 

the national level, COVID-19 was classified as a statutory 

class B infectious disease on January 20. Prevention and 

control measures for class A infectious diseases (including 

only plague and cholera) were instituted. At the provincial 

level, Zhejiang, Hunan, and Guangdong were the first to 

activate the Level I public health emergency response on 

January 23. With the final activation in Tibet, all 31 

provinces and equivalent administrative units on the 

Chinese mainland (hereafter provinces) had declared a 

Level I response by January 29 [2]. As the spread of 

COVID-19 in China was effectively suppressed [18], the 

first decision to lower the response level from the top level 

to the third level was made in Gansu province at 2: 00 p.m. 

on February 21, 2020. Liaoning and Guizhou provinces 

made the same decision on February 22 and 23 respectively, 

followed by additional provinces successively lowering 

their emergency response levels to the COVID-19 threat. 

The downgrading of the emergency response level 

indicated that the focus of each province began to shift to 

the restoration of economic and social order. This provides 

us with a unique natural experiment allowing us to 

investigate how air pollution levels responded to the 

reopening economies during COVID-19. 

The goal of our analysis is to quantify the causal impact 

of reopening the economy on local air pollution levels and 

to provide important empirical evidence for other countries. 

This paper is the first to quantify the causal impact of 

reactivating the economy in Lanzhou, the capital city of 

Gansu province, on local concentrations of four air 

pollutants by applying the synthetic control method based 

on city-level daily air quality data in China. The results 

show that concentrations of ��� , ��� , �� , and ��  in 

Lanzhou increased significantly following its reopening. 

Specifically, ���  concentrations increased significantly 

by as much as 30 
�/�� , while ��  concentrations 

increased significantly by 60 
�/�� but peaked on the 

6th day after reopening. It is notable that these increases 

resulted in a 75% increase in ��� concentrations from a 

level very close to the WHO safe limit (40 
�/��) during 

the lockdown and a 60% increase in �� from the safe limit 

(100 
�/�� ). We also find that the reopening caused 

significant fluctuations in concentrations of ��� and ��. 

This study is novel because we employ the synthetic 

control method developed by Abadie and Gardeazabal [19] 

and Abadie et al. [20] that allows for a more objective 

assessment of the air quality impacts of economic 

reopening. By reproducing the counterfactual outcome 

trajectory that the treated group would have experienced in 

the absence of the intervention using a weighted average of 

available control units, the synthetic control method 

overcomes the sample selection bias and policy 

endogeneity problems that can occur in the selection of 

control groups in previous empirical approaches. Second, 

although China has implemented a large number of 

intensive policy adjustments as the rapid spread of the virus 

has been contained, this study uniquely disentangles and 

quantifies the causal impact of reactivation on local air 

quality by selecting an appropriate sample time window. 

Third, ��� , �� , and ��  are all “criteria air pollutants” 

according to the U.S. Environmental Protection Agency 

(EPA), but have rarely appeared in previous discussions and 

studies of the impact of COVID-19 on air quality. This 

paper examines these three pollutants, in addition to ���, 

to determine the effect of reopening an economy on the 

concentrations of different air pollutants. Finally, as 

downward pressure on the world economy grows, this 

paper enriches the environmental economics and 

epidemiological research on the persistent effects of 

COVID-19 on air quality, contributes to the evaluation of 

economic stimulus packages that consider climate change, 

and provides timely policy guidance to all countries. 

The remainder of the paper is organized as follows: 

Section 2 introduces the identification strategies used in this 

study. Section 3 describes the data and empirical results. 

Section 4 performs robustness checks to assess the 

credibility of synthetic control counterfactuals and measures 

the significance of the reactivation effect. Section 5 

concludes. 

2. Identification Strategy 

The difference in differences (DID) technique and 

propensity score matching (PSM) were commonly used in the 

prior literature for causal inference and policy evaluation. 

Nevertheless, the DID method is arbitrary and subjective for 

the selection of the reference group. Also, systematic 

differences between the treated city and the control city may 

account for the implementation of the policy in the target city, 

leading to policy endogeneity. Besides, the parallel trend 

assumption is often difficult to maintain in practice because 

unobserved confounders may have time-varying effects on the 

results. While the PSM approach controls the influence of 

observable variables, hidden biases will occur if the selection 

is based on unobservable variables. Further, the PSM-DID 
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design cannot control for unobservable factors that change 

over time. 

In contrast, the synthetic control method (SCM) [18, 19] 

overcomes these inherent disadvantages of the above 

techniques. Other advantages of applying a SCM approach 

include: (1) The transparency of the counterfactual allows the 

weights to be validated because the contribution of each 

control unit to the entire synthetic unit is explicitly reflected 

[21]. (2) No extrapolation is required and the synthetic 

weights are selected and calculated without using the 

post-intervention data, ruling out the risk of specification 

cherry-picking or p-hacking [12]. Athey and Imbens believe 

that the SCM method is “arguably the most important 

innovation in the policy evaluation literature in the last 15 

years” [22]. 

The SCM technique allows us to construct a “synthetic” 

Lanzhou using a weighted average of a set of control cities. 

The goal of the synthetic Lanzhou is to reproduce the 

trajectory of real Lanzhou in terms of air pollution levels 

before reopening. Then, the trajectory difference between the 

synthetic and real Lanzhou after the reactivation can be 

summarized as the causal effect of reopening. 

Given the effectiveness of policy implementation, we 

choose each provincial capital instead of the province as the 

unit of observation for this study. The outcome variables of 

interest in this study are daily city-level concentrations of four 

pollutants: ��� , ��� , �� , and �� . Following the 

conventional setting used by Abadie et al. [20], suppose we 

observe the outcome of � + 1  cities during the period 

�(= 1,… , �). Let ���� be the outcome for city �(= 1,… , � +
1) at time � if reopening is not implemented. Let ���  be the 

outcome for city � at time � if city � is restarted in periods 

�
 + 1 to �, where �
 is the time to perform the restart. In 

the lockdown period (for � ∈ "1, … , �
#) we have ��� = ���� 

for all � ∈ "1, … , � + 1#. Let $�� = ��� − ���� be the effect of 

reopening the economy on city � at time �. We can observe 

���  of the city that has been reopened, but we cannot observe 

����  of this treated city. Therefore, this study uses the 

following factor model proposed by Abadie et al. [20] to 

estimate ����. 

���� = &� + '�(� + )�
� + *�� .            (1) 

In equation (1), &� is the time fixed effects, (� is a vector 

of control variables for city �  that can be observed, '� 

represents a corresponding vector of unknown parameters, 
� 

is a vector of unobserved local fixed effects, )�  denotes a 

vector of unknown common factors, and the error terms *�� 

are unobserved transitory shocks with zero mean at the city 

level. 

Suppose that the first city (� = 1) is reopened, and the 

remaining K cities ( � = 2,… , � + 1 ) are not. Consider a 

(� × 1 ) vector of weights - = (.�, … , ./0	)1  such that 

.2 ≥ 0  for 5 = 2,… , � + 1  and .�, … , ./0	 = 1 . Each 

particular value of - represents a potential synthetic control, 

which is a weighted average of all cities in the control group. 

The outcome variable for each synthetic control indexed by 

- is 

∑ .2
/0	
27� �2� = &� + '� ∑ .2

/0	
27� (2 + )� ∑ .2

/0	
27� 
2 + ∑ .2

/0	
27� *2� .                          (2) 

Suppose that there are (.�
∗, … , ./0	

∗ ) such that 

∑ .2
∗/0	

27� �2	 = �		, ∑ .2
∗/0	

27� �2� = �	�, ∑ .2
∗/0	

27� �29: = �	9: , and	 ∑ .2
∗/0	

27� (2 = (	.                  (3) 

If ∑ )�
1)�

9:
�7	  is nonsingular, then, 

�	�
� − ∑ .2

∗/0	
27� �2� = ∑ .2

∗ ∑ )�?∑ )@
1 )@

9:
@7	 A

19:
B7	

/0	
27� )B

1 (*2B − *	B) − ∑ .2
∗/0	

27� (*2� − *	�).                (4) 

Abadie et al. have proved that the right-hand side of 

equation (4) converges to zero under several parsimonious 

requirements [20]. Therefore, after reopening ( � ≥ �
 ), 

∑ .2
∗/0	

27� �2�  can be used as an unbiased estimate of �	�
�  to 

evaluate the effect of the reactivation. 

The weight vector -∗ = (.�
∗, … , ./0	

∗ )′  is chosen by 

minimizing the distance function ‖E	 − E
-‖F =
G(E	 − E
-)′H(E	 − E
-). In this function, E denotes the 

feature vector of cities, which corresponds to the observable 

control variable Z and the outcome � before reopening. The 

importance of different feature vector E  in constructing 

weights depends on the selection of the symmetric and 

positive semidefinite matrix H. We include in E the values of 

predictors of air pollution levels for Lanzhou and the 

remaining 14 potential controls. Our predictors of the 

concentration of each pollutant are gross regional product per 

capita (GRPper) and industrial structure (Indushare). These 

variables are averaged over the January 30-February 2 period 

and augmented by adding the corresponding pollutant 

concentrations on specific days. 

3. Empirical Analysis 

3.1. Data Source and Variable Selection 

The data used in this study were obtained from multiple 

open-access databases. City-level daily concentrations of 

four pollutants (��� , ��� , �� , and �� ) for 31 Chinese 

provincial capitals were collected from China’s online air 

quality monitoring and analysis platform, which provides 

hourly updated data on weather information for 367 Chinese 

cities. Moreover, daily temperature data comes from the 

Weather Post-Report website. Investment in environmental 

governance, demographics, and socio-economic 

development data for each city were taken from the China 

Environment Yearbook 2019 and the China City Statistical 

Yearbook 2019. 

Our sample data, which covers 31 cities in China 
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between January and March 2020, is generated by matching 

the above datasets by city name and date and retaining only 

all provincial capitals from the Chinese mainland. With the 

effective control of the COVID-19 pandemic, Gansu 

province was the first to lower the public health emergency 

response from Level I to Level III at 2: 00 p.m. on February 

21, 2020. Liaoning and Guizhou provinces then made the 

same decision on February 22 and 23 respectively. Most of 

the other provinces in our sample have also successively 

downgraded their emergency response levels since 

February 28, making them unsuitable to remain as potential 

control units. Thus, in order not to attenuate the reactivation 

effect estimate that we obtain for Lanzhou, we restrict our 

data period to February 27 and discard other restarted cities 

other than Lanzhou before then. This means that our 

analysis is limited to one week after reopening. We set the 

Lanzhou reopening date as February 21, 2020, to match the 

official government announcement that the province in 

which this city is located will reopen on that date. Abadie 

suggests that if there is an anticipation effect, the 

researchers should backdate the intervention date in order 

to fully estimate the entire scope of the policy intervention 

[21]. We therefore tested different starting dates and are 

assured that our results are not sensitive to the choice of 

date. 

3.2. Empirical Results 

Figure 1 plots the daily trends in ���, ���, ��, and �� 

concentration levels in Lanzhou (red line) and other 

Chinese provincial capitals (dashed grey line). As this 

figure suggests, the time series of Lanzhou before 

reopening the economy is notably different from that of 

other cities in China. Concentrations of the four air 

pollutants have remained stable in other cities since the 

activation of the Level I public health emergency response, 

while the concentration of each air pollutant in Lanzhou is 

generally higher than that in other cities in China and is 

accompanied by more dramatic fluctuations. Therefore, 

other cities in China may not provide a suitable comparison 

group for Lanzhou to study the impact of reopening the 

economy on local air pollution levels. 

 

Figure 1. Trends in concentrations of ���, ���, ��, and ��: Lanzhou vs. other cities in China. 

As mentioned above, we construct the synthetic Lanzhou as 

the convex combination of cities in the control group, which 

most closely resembled Lanzhou in terms of the pre-reopening 

value of each predictor. The results are shown in Table 1, 

which compares the pre-reopening characteristics of the actual 

Lanzhou with those of the synthetic Lanzhou, as well as with 

the population-weighted average of the 14 cities in the control 

group. 

We see that the average from cities that were not 

reactivated prior to February 21 does not provide a suitable 

control group for Lanzhou. Especially before reopening, 

the concentrations of all four air pollutants and other 

predictors were substantially different in the average of the 

14 control cities from those in Lanzhou. In contrast, the 

synthetic Lanzhou accurately reproduces the concentration 

levels of ��� , ��� , �� , and �� and the values of their 

predictor variables in Lanzhou before reopening the 

economy. 
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Table 1. Predictor means for ���, ���, ��, and ��. 

Variables Real Lanzhou Synthetic Lanzhou Average of 14 control cities 

Panel A: NO� (
�/��)    

LnGRPper (2019 CNY) 11.20 11.44 11.48 

Indushare (%) 98.43 97.15 96.47 

��� (30Jan) 62.00 33.26 26.36 

��� (04Feb) 55.00 38.36 22.79 

��� (10Feb) 66.00 46.86 29.79 

��� (12Feb) 62.00 49.11 30.21 

��� (17Feb) 56.00 30.98 17.43 

��� (19Feb) 58.00 32.34 30.29 

��� (20Feb) 16.00 19.28 28.21 

Panel B: SO� (
�/��)    

LnGRPper (2019 CNY) 11.20 11.26 11.48 

Indushare (%) 98.43 95.34 96.47 

��� (31Jan) 28.00 24.54 14.14 

��� (04Feb) 29.00 26.06 10.79 

��� (06Feb) 26.00 33.62 10.29 

��� (10Feb) 28.00 26.61 12.79 

��� (14Feb) 8.00 12.65 7.00 

��� (17Feb) 26.00 19.27 9.14 

��� (20Feb) 9.00 13.98 9.57 

Panel C: O� (
�/��)    

LnGRPper (2019 CNY) 11.20 11.41 11.48 

Indushare (%) 98.43 97.11 96.47 

�� (31Jan) 118.00 106.16 98.07 

�� (02Feb) 86.00 95.87 77.64 

�� (04Feb) 110.00 113.91 86.36 

�� (07Feb) 107.00 88.68 61.93 

�� (11Feb) 130.00 112.60 86.57 

�� (16Feb) 110.00 86.89 82.29 

�� (20Feb) 80.00 89.99 79.93 

Panel D: CO (��/��)    

LnGRPper (2019 CNY) 11.20 11.34 11.48 

Indushare (%) 98.43 96.43 96.47 

CO (30Jan) 2.00 1.27 1.07 

CO (03Feb) 2.00 1.00 0.93 

CO (06Feb) 2.00 1.25 1.07 

CO (09Feb) 2.00 1.53 1.14 

CO (12Feb) 2.00 1.27 1.21 

CO (14Feb) 0.00 0.79 0.93 

CO (20Feb) 0.00 1.27 1.07 

Note: ��� (30Jan) means that the variable ��� takes the value of January 30, and the rest may be deduced by analogy. 

Table 2. City weights in the synthetic Lanzhou. 

City Weight City Weight 

Panel A: ��� 

Tianjin 0.264 Yinchuan 0.736 

Panel B: ��� 

Harbin 0.132 Shijiazhuang 0.143 

Yinchuan 0.725   

Panel C: �� 

Xi'an 0.077 Zhengzhou 0.249 

Yinchuan 0.675   

Panel D: �� 

Tianjin 0.264 Shijiazhuang 0.270 

Xi'an 0.215 Yinchuan 0.252 

Note: The remaining cities not listed in Panel A, Panel B, Panel C, and Panel 

D are assigned 0 weights. 

Table 2 displays the weights of each control city in the synthetic 

Lanzhou. The weights reported by Panel A in Table 2 indicate that 

the pre-reopening trend in ��� concentrations in Lanzhou is best 

imitated by a combination of Tianjin and Yinchuan. Panel B shows 

that the ��� trend in Lanzhou before reopening is best reproduced 

through a combination of Harbin, Shijiazhuang, and Yinchuan. 

According to Panel C, the pre-reopening �� trend in Lanzhou is 

best captured by a combination of Xi'an, Zhengzhou, and 

Yinchuan. Panel D suggests that a combination of Tianjin, 

Shijiazhuang, Xi'an, and Yinchuan can best reproduce the �� 

trend in Lanzhou before reopening. 

Figure 2 plots the daily trends in ���, ���, ��, and �� 

concentration levels in Lanzhou (red line) and synthetic 

Lanzhou (gray dashed line). Notice that, in contrast to the 

trends in other cities in China (as shown in Figure 1), the 

concentration of each air pollutant in the synthetic Lanzhou 
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very closely tracks the trajectory of this variable in Lanzhou 

for the entire pre-reopening period. Combined with the high 

degree of balance on all predictors (Table 1), this suggests that 

the synthetic Lanzhou provides a reasonable approximation of 

Lanzhou during the implementation of the Level I response in 

terms of concentrations of ��� , ��� , �� , and �� , 

respectively, in the absence of reopening. 

 

Figure 2. Trends in concentrations of ���, ���, ��, and ��: Lanzhou vs. synthetic Lanzhou. 

 

Figure 3. Gaps between Lanzhou and Synthetic Lanzhou in concentrations of ���, ���, ��, and ��. 
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Our estimate of the impact of reopening the economy on 

concentrations of four air pollutants in Lanzhou is the 

difference between the concentrations of ���, ���, ��, and 

�� in Lanzhou and in their synthetic versions respectively 

after reopening. Figure 3 plots the daily estimates (blue line) 

of the impact of reactivation. As shown in the figure, the 

trajectory of synthetic Lanzhou simulating the concentration 

of each air pollutant in real Lanzhou closely matched that of 

real Lanzhou before reopening. 

Figure 2 shows that both trends for ���  concentrations 

between January 30 and February 20 were around 40 
�/��, 

which is the WHO safe limit. After January 21, 2020, as 

shown in Figure 3, a large and significant gap opens up 

between ��� emissions in Lanzhou and synthetic Lanzhou 

with a peak difference of around 30 
�/��, equivalent to an 

increase of 75% of the level of ���  concentrations 

immediately after reopening. The gap between the series 

closes over time but still exceeds 20	
�/�� on the 5th day 

after restart and 2	
�/�� at the end of the 7-day period. The 

results show that reopening the economy led to a large 

increase in ��� level in Lanzhou. Road traffic is the largest 

source of ��� concentrations in Chinese cities [12]. As the 

economy recovers, a marked increase in activity in the 

transport sector is the main reason for the increase in ��� 

level in Lanzhou. 

Moving on to ���, Figure 2 shows that the ��� level in 

Lanzhou before reopening was generally maintained at the 

WHO safe limit of 20 
�/��. As shown in Figure 3, the SO2 

level in Lanzhou after reopening was 10 
�/�� higher than 

that when Lanzhou was not restarted, but decreased by 10 


�/�� immediately on the next day and increased again by 

approximately 10 
�/��  on the 5th day after reopening. 

��� is often produced by the combustion of fossil fuels in 

electricity generation and heating furnaces [14]. With the 

reactivation of the economy, industrial demand is gradually 

increasing while the demand for dirtier sources of residential 

electricity and heating, especially high-sulfur coal, by workers 

who originally stayed at home, is decreasing. The significant 

fluctuations in ���  concentrations reflect the dynamic 

balance between residential demand for electricity and heating 

and industrial demand in the region. 

We now consider ��. Figure 2 shows that the �� level in 

Lanzhou before reopening was generally maintained at the 

WHO safe limit of 100 
�/��. After reopening (as shown in 

Figure 3), the �� level in Lanzhou increased by 15 
�/�� 

compared with that before reopening. Notably, the �� 

increase peaked at 60 
�/�� on the 6th day after restarting, 

which corresponds to a 60% increase of the �� concentration 

level. ��  is not emitted directly but is produced by the 

combination of nitrogen oxides (��L) and volatile organic 

compounds (H��B) under high temperature and sunlight [14]. 

This is consistent with the delayed appearance of the peak. 

Finally, as shown in Figure 2, the CO level in Lanzhou 

before reopening was around 0 to 2 ��/��. Figure 3 shows 

that the CO level in Lanzhou on the second day after 

reopening was 1 ��/�� higher than that when Lanzhou was 

not restarted. However, the increase in CO disappears 4 days 

after the restart and returns to the same trend followed by the 

other 14 cities. CO is released during combustion. Vehicles 

and machinery that burn fossil fuels emit carbon monoxide, as 

do home heating and cooking. With the lifting of the lockdown, 

a discernible increase in travel and industrial activity has 

increased CO concentrations. But less demand for residential 

heating and cooking sources will also offset the increase in 

industrial demand. 

To assess the robustness of our results, we included 

additional predictors of air pollution levels among the 

variables used to construct the synthetic control. Regardless of 

which and how many predictor variables we added, our results 

remained virtually unaffected. The predictor variables used 

for robustness checks included daily maximum temperature, 

daily minimum temperature, population density, green space 

coverage in built-up areas, and investment in environmental 

governance to capture the climate, demographic, economic, 

and social structure of each city. 

4. Placebo Tests 

To validate the significance of our estimates, we need to 

answer the question of whether our results are entirely caused by 

chance. Following Abadie and Gardeazabal [19], Bertrand et al. 

[23], and Abadie et al. [20, 24], we perform a series of placebo 

tests. We start with an in-time placebo test and then estimate an 

in-place placebo test. The placebo test results convince us that 

our findings are not by chance. 

4.1. In-Time Placebo Test 

For the in-time placebo test, we assume that the Lanzhou 

reopening occurred on the same date but one year earlier, in 

2019. Figure 4 displays the results of in-time placebo tests for 

���, ���, ��, and ��. We use the same setting and run the 

same code for the placebo test except for the reopening date. In 

Figure 4 we focus on the data period between January 30, 2019, 

to February 27, 2019, and then set the fake restart to be 

February 21, 2019. For the four in-time placebo tests we did not 

observe any significant increase in the four air pollutant 

concentration levels for this fake restart date. 

4.2. In-place Placebo Test 

We use the in-place placebo test to verify the possibility that 

we would obtain results of this magnitude if we had randomly 

selected a city for the study instead of Lanzhou. We iteratively 

apply the synthetic control method used to estimate the effect of 

reopening the economy in Lanzhou to every other city in the 

control group. In each iteration, we reassign the reopening 

intervention to one of the 14 control cities in our data and shift 

Lanzhou to the control group. We then calculate the estimated 

effect associated with each placebo run. This iterative process 

provides us with a distribution of estimated gaps for the cities 

that have not been reopened. If the placebo studies show that the 

gap estimated for Lanzhou is unusually large compared to the 

gaps for the cities that did not reopen, then our analysis provides 

significant evidence of the impact of reopening the economy on 

local air pollution levels in Lanzhou. Otherwise, our analysis 
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does not provide significant evidence of the impact of reactivation. 

 

Figure 4. The in-time placebo test results of ���, ���, ��, and ��. 

 

Figure 5. The results of in-place placebo tests on ���, ���, ��, and ��. 

Figure 5 depicts the results of in-place placebo tests for 

��� , ��� , �� , and ��. The gray dashed lines denote the 

difference in the air pollutant concentrations between each 

city in the control group and its respective synthetic version. 

The superimposed red line represents the gap estimated for 

Lanzhou. If the synthetic Lanzhou had failed to fit the air 
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pollution levels for the real Lanzhou before reopening the 

economy, we would have argued that much of the 

post-reopening gap between the real and the synthetic 

Lanzhou was also artificially created by lack of matching, 

rather than by the effect of reopening. Therefore, in Figure 5 

we focus only on cities that could have fit almost as well as 

Lanzhou during the pre-reopening period, that is, those cities 

that had a pre-reopening mean squared prediction error 

(MSPE) of less than twice the MSPE of Lanzhou. To do so we 

exclude Harbin for ���, Chongqing and Harbin for ��, while 

for ��� and �� we do not discard any cities. 

As shown in Figure 5, almost all lines are tightly 

intertwined with the zero-gap line before reopening. This 

indicates that the synthetic control method provides an 

excellent fit for the concentrations of each air pollutant in 

Lanzhou before reopening. Specifically, the estimated gap in 

���  after reopening the economy in real Lanzhou is the 

largest relative to the distribution of gaps across cities in the 

control group, none of which showed a similar increase (over 

30 
�/�� ). Thus, reopening the economy significantly 

increased ���  concentrations in Lanzhou. Next, after 

reopening, the ��� trajectory in Lanzhou stands out among 

the other 13 control cities and fluctuates rapidly. In specific, 

��� concentrations in Lanzhou increased significantly after 

the reopening, then decreased significantly on the 3rd day and 

increased significantly again on the 5th day. Moreover, while 

��  concentrations in Lanzhou increased immediately after 

reopening, we only found a significant increase in �� 

concentrations 6 days after reopening which is where the red 

line in the lower left figure shows the largest increase 

compared to the remaining grey dashed lines. Finally, the �� 

gap estimated for Lanzhou is most unusual relative to the gaps 

for the other 14 cities within 4 days of reopening, indicating 

that reactivation made a significant contribution to the 

increase in �� concentrations in Lanzhou. 

One final way to evaluate the Lanzhou gap relative to the 

gaps obtained from the in-place placebo runs is to look at the 

distribution of the ratios of post/pre-reopening MSPE. The main 

advantage of looking at ratios is that it avoids artificially 

choosing a cut-off point to exclude ill-fitting placebo runs. 

Besides, it helps to remove the impact of weather noise on local 

pollution concentration observations. Figure 6 displays the 

distribution of the post/pre-reopening ratios of the MSPE for 

Lanzhou and all 14 control cities for ���, ���, ��, and ��. 

The ratio on �� for Lanzhou stands out clearly in the figure. 

No other control city achieves such a large ratio. Therefore, the 

probability of obtaining a post/pre-reopening MSPE ratio for 

�� as large as Lanzhou’s under a random permutation of the 

intervention in our data is 0.067 (1/15). Similarly, if we were to 

randomly assign the intervention in the data, the probability of 

obtaining post/pre-reopening MSPE ratios on ���, ���, and 

�� as large as Lanzhou’s is 0.100, 0.091, and 0.083 in turn. 

These results indicate that, relative to the control, the reopening 

of Lanzhou led to significant increases in ���, ���, ��, and 

�� concentrations. 

 

Figure 6. Ratios of post/pre-reopening MSPE for ���, ���, ��, and ��. 

5. Conclusion 

The COVID-19 pandemic is shutting down countries 

around the world, causing a significant improvement in air 

quality in large cities as countries impose stricter quarantines 

and travel restrictions. However, the decline in air pollution 
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caused by the virus outbreak may only be temporary. As 

regions open up again, industrial activity and human 

movement will augment the ambient pollutants, rapidly 

offsetting air improvements. It is therefore crucial and urgent 

to quantify the causal impact of reopening the economy during 

COVID-19 on local air quality. Based on the city-level daily 

air quality data in China, this study is the first to provide 

causal interpretations for the impact of reopening the 

economy of Lanzhou on local concentrations of four air 

pollutants using the synthetic control method. We find that 

concentrations of ���, a pollutant strongly associated with 

traffic and fossil fuels, increased significantly by as much as 

30 
�/��  after reopening (a 75% increase from the 

lockdown level) although this increase declined to 2	
�/�� 

by the end of our 7-day window of analysis. Concentrations of 

��  also increased significantly by 60 
�/��  (a 60% 

increase) although this increase did not peak until 6 days 

after the restart. Note that the concentrations of ��� and �� 

after the lockdown were very close to their WHO health 

limits, so these increases brought these concentrations to 

exceed safe limits. Further, the reopening caused significant 

fluctuations in ���  and �� concentrations, reflecting the 

dynamic balance between the demand for residential 

electricity and heating and industrial demand in the region. 

Taken together, we cannot count on COVID-19 to improve 

air quality. But at the very least, the unplanned impact of this 

pandemic on air provides a glimpse of how countries and 

companies are prepared to deal with this slow moving but 

destructive air pollution crisis. While the threat of COVID-19 is 

serious, air pollution has an even more catastrophic impact on 

our health and life expectancy [25]. Therefore, if we want 

billions of people around the world to live longer and healthier 

lives, we must raise air quality to the level of a public health 

emergency, rely on economic stimulus packages that consider 

air quality, and take individual and collective action to protect it. 

In our case, daily air pollution concentration levels in 

Lanzhou are highly volatile, reflecting the fact that pollutant 

concentrations are jointly influenced by emission levels and 

meteorological conditions. As a result, it is challenging to 

assess the impact of a policy intervention on pollutant 

concentrations [12, 26-28]. Therefore, removing the 

confounding effects of local weather conditions on pollution 

concentrations will be a constructive subject for future 

research. Furthermore, this paper shows that reopening the 

economy significantly increases ��� , ��� , �� , and �� 

concentrations in the short term (one-week period). 

Nevertheless, due to the limited time window of our sample 

data, we cannot definitively determine the long-term impact of 

reopening the economy on air pollution levels. In the long run, 

a healthy population (and environment) is essential for a 

healthy economy. More future research is needed to determine 

what is the best way to balance the trade-offs between what is 

good for the economy and what is good for public health. 
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